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1. INTRODUCTION

Let C(I) be the set of continuous, real-valued functions on the interval
I = [a, b], and let lln be the set of real polynomials of degree n or less. Let
II 'Ii denote the uniform norm on C(I). For/E C(I)with best uniform approxi
mation Tn(j) from lln there is a positive constant I' such that

p - Tn(j)il ~ 1'(1 / - p II - 1'/ - Tn(f)1) (1)

for all p Elln . Inequality (1) is the strong unicity theorem due to Newman
and Shapiro [6]. The strong unicity constant Mn(j) is defined to be the
smallest positive constant I' such that (1) is true for all p Elln .

The dependence of Mn(j) on f, n, and I has been the subject of several
recent papers (see [3,4, 7] and the references of [4]). This paper concerns the
dependence of Mn(f) on n. The problem of characterizing those/E C(I) for
which the sequence

{MlI(f)}~~o (2)

is bounded was posed by Poreda [7]. It is easy to see that if / Ell", , then
Mn(f) 1 for all n ;?o m and, hence, (2) is bounded. In his paper, Poreda
constructs a function / EO C(J) for which the sequence (2) is unbounded.
Henry and Roulier [4] demonstrate a class of functions quite different from
Poreda's example for which

lim M n(f) ~= ex;
n-''l.'

and conjecture that the sequence (2) remains bounded only if / is a poly
nomial.

* Presented by the author in the University of Arkansas Annual Lecture Series in Mathe
matics, March 14-18, 1977.
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STRONG UNICITY CONSTANTS 217

The results of this paper extend both Poreda's example and the result of
Henry and Roulier to form a wider class of functions whose sequence of
strong unicity constants is known to be unbounded. In particular, Poreda's
problem is reduced to considering only those nonpolynomial functions f for
which the extremal set of f - T,,(f) eventually contain more than n + 2
points.

In view of the results of Henry and Roulier, it may be interesting to
determine if a nonpolynomial f E C(I) exists for which (2) has a bounded
subsequence. We answer this question by constructing an f E C(I) for which
limn_c< Mil) = I and Ilrrin_oc Mn(f) = 00.

2. THE UNBOUNDEDNESS OF M,,(f)

LetfE C(I). For each n, let S" = {p Ell" : i[p Ii = I}, eif) = f - TnCf),
and E,,(f) = {x E I: I e,,(f)(x) I == [I enCf)lI}. We refer to E,,(f) as the extremal
set of enCf). The following characterization of the strong unicity constant
appears in the papers [1,5]. Ifftil" ,then

(3)

In Poreda's example [7], there is an interval J properly contained in I such
that E,,(f) C J for infinitely many n. In Theorem I, we show that whenever
the E ll(f) do not "fill out" the interval I (as in Poreda's example) the sequence
(2) is unbounded.

THEOREM 1. Let f E C(I) and suppose there is a nondegenerate interval
[c, d] C I and a strictly increasing sequence {n~}:~l of positive integers such
that EnJf) n [c, d] = 0 for a == 1,2,.... Then {M,,(f)};;'~o is unbounded.

Proof We may assume that a < c < d < b. Let e = (c + d)/2. Let
o < S < 1 be arbitrary. By a theorem due to Wolibner (see [7,9]), there is a
polynomial q such that q(a) = 0, q(c) ~= S, q(e) == 1, qed) = S, q(b) = 0, and
q is monotone on each of the intervals [a, e], [c, e], [e, d], and [d, b]. Thus
I' q il == 1 and! q(x)i < 0 on I\[e, d]. We now select an ex such that na is greater
than the degree of q. Thus q E S"a and

max [sgn enJf)(x)] q(x) < S.
XEEn)fl

Hence,

o < min max [sgn e,,~(f)(x)] p(x) c(; S
PESna: xEE

n1
(f)

and by (3), M" (f) :?: 1/0. Thus the sequence (2) is unbounded, and
Theorem 1 is pro~en.
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The analysis of Henry and Roulier [4] utilizes a characterization of MnU)
different from (3). If f E C(I), the alternation theorem [2, p. 75] asserts that
there are n + 2 points

Xon < XIn < ." < X(n+l)n (4)

in EnU) on which the error function enU) alternates in sign. For k = 0, .. "
n + I, let qkn be the polynomial in fIn such that qkn(Xin) = (~I)i, i = 0, ... ,
n + I, i '# k. Cline [3] has shown that

(5)

is a suitable strong unicity constant, that is, Kn ;?c MnU). Henry and Roulier
[4] remark that if EnU) contains exactly n + 2 points, then Kn = MnU).
Using this characterization of the strong unicity constant, Henry and Roulier
prove the following theorem.

THEOREM 2. Let f E coo(I). Suppose there exist an € > °and an N > °
such that for all n ;?c N,fIn+ll is positive on (a, b) and

for all g, TJ E I. Then limn400 MnU) = 00.

In their proof of Theorem 2, Henry and Roulier require the alternation
set (4) to be distributed throughout the interval I in a particular fashion to
show that limn400 K n = 00. We prove that limn400 K n = 00 regardless of how
(4) is distributed throughout I.

THEOREM 3. Suppose that for each n, there are n + 2 points Xon < XIn <
... < X(n+l)n in I given. Then limn400 Kn = 00, where Kn = Kn(xon ,"',
x(n+l)n) is given by (5).

Proof For the sake of notation, we show that the sequence {Kn}:~o is
unbounded and note that the following analysis can be used to show that
every subsequence of {Kn};:'~o is unbounded. For convenience let X-In = a
and X(n+2)n = b.

We require the following lemma.

LEMMA. There is a strictly increasing sequence {n"}.~':,"1 of positive integers
such that for each ex there is a k" E {O, ... , nO' + I} and there is a PO' E fIn with
I p,,(Xin)l :s;: I, i = 0, ... , nO' + I, i '# k" where "
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Proof For each n, let L n denote the interpolation operator which assigns
to each g E C(I) the polynomial Lng in IIn which fits g at the nodes X1n ,... ,
x(n+l)n' From Rivlin [8, Theorem 4.2, p. 91, proof of Theorem 4.3, p.92],
there is a sequence {fn}~+l in B = {g E C(I): 1\ g 1\ :(; I} such that

4
II Lnln II ~ 2 log(n) - 1

7T

for all n. Thus limn_co II Lnln II = 00.

If the numbers

(6)

are unbounded with respect to n, then there is a strictly increasing sequence
{n"'}~l of positive integers such that

In this case, we let k", = 0 and p", = Ln In .
In case the numbers (6) are bounded'"with respect to n, there is a number

A ~ 1 such that

for all n. Let gn = In/A. Then gn E B, I(L~n)(Xin)1 ~ 1, i = 0,... , n + 1, and
limn_co II Lngn II = 00. In this case, we let {n,.}:~l be the identity sequence and
discard the subsequence notation. For each n, let Yn E I be such that I(Lngn)
(Yn)! = II Lngn II and select kn E {O,... , n + I}, where Yn E [X(k -l)n , X(k +l)n]'
We now choose Pn = L~n and note that n n

Thus the lemma is proved.
We now return to the proof of Theorem 3. Choose a sequence {n",}:~l with

corresponding k", E {O, ... , n", + I} and p", E IIn as in the above lemma. For
i = 0, ... , n", + 1, i =1= k"" let lin be the poly~omial in IIn such that lin
(Xin) = 1 and lin (Xjn ) = O,j ~ 0,... , n", + 1,j =1= i,j =1= k",. It can be show~
that"c-l)i lin (X),'"i = "'0, ... , n", + 1, i =1= k", , have the same sign on the interval
(X(k -l)n , X(k" +l)n ). For all sufficiently large n:, we may select Y", E (X(k -l)n ,
X(k :l)n )such that " "

" "
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Thus

Thus
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max ,p,(x)i =c I PolY,)
XE[X (kC).-l)n:"t ,X(kJ:+1)n:\:]

i nCl:+l I
= I L P,(Xi,,) li"o.Cy,)

I 1=0 .
i¥kCi..

nrt+l

<~; I Ili"a(Ya);
i=O

i#h':'i.

=c I"fl

(-I)i li",(Yo)!
,~o

i#kr:x

(7)

and {K,,}:~o is unbounded.
A reflection of the lemma indicates that every strictly increasing sequence

of positive integers has a subsequence {n'}:~l which satisfies the properties of
the Lemma and thus (7). As a result, every subsequence of {K,,}:~o is un
bounded and, therefore, lim,,~o: K" = 00. The proof of Theorem 3 is now
complete.

In view of the remark of Henry and Roulier [4] that Mn(f) = Kn whenever
E,,(f) contains exactly n + 2 points, the next theorem follows from
Theorem 3.

THEOREM 4. Let fE C(l). If En(f) contains exactly n + 2 points for
infinitely many n, then the sequence {Mn(f)}:~o is unbounded.

Proof Let {no}:~l be a strictly increasing sequence of positive integers
such that En (f) contains exactly no + 2 points, say X on < X ln < ... <
X(n +1)n . By the remark of Henry and Roulier [4], M n (]) = Kn" (xo" '00"

X(n"+1ln"') and by Theorem 3limo~oo M n (f) = 00. Thus Theorem 4 i~ pro~ed.
iheo~em 4 reduces the problem in [7] to considering only those f E C(I)

such that for all sufficiently large n the set E,,(f) contains more than n + 2
points. It should be remarked that it is unknown, at least to the author,
whether such functions exist. A condition which ensures that En(f) contains
exactly n + 2 points is thatj<n+11 does not vanish on the open interval (a, b).
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This observation and Theorem 3 allow us to remove the rather stringent
condition on j<n+1) in Theorem 2.

THEOREM 5. LetfE C[a,b] (\ CONCa, b).lfthere is an N > 0 such thatfor
all n ~ N,j(n+l) does not vanish in the open interval (a, b), then limn_oo Mn(j)
= 00.

In concluding this section, we remark that the conditions of Theorem 5 are
satisfied by a variety of functions which do not satisfy the conditions of
Theorem 2, for example, sin(x) and cos(x) with 1= [0, 7T/2], exp(x2) with
1= [0, 1], and log (x) with I = [a, b], where 0 < a < b.

3. AN EXAMPLE

In this section, we demonstrate a function f E C(l) for which limn_oo
Mn(j) = 1 (which is minimal) and Iiiiin_ON Mn(j) = 00. This example is
based on a construction of Poreda [7] in which he shows that given an in
creasing sequence {x~}.~'~o of points in I, there is an f E C(/) whose extremal
sets EnC!) are contained in {x~}:~o for infinitely many n. In the following
example, the extremal sets deviate considerably from those of Poreda's
construction.

THEOREM 6. There is a function f E C(/) such that limn_ON M n(j) = land
limn _ oc Mn(j) = 00.

Proof Since IIn is finite dimensional and Sn = {p EIIn : lip II = I} is
bounded, Sn is equicontinuous. Thus for each n, there is a On > 0 such that
Ip(x) - p(y) I < lin for all p E Sn and all x, Y E I where I x - Y I < On .

We construct sequences {Q~}:~l , {n~}:~o , {m~}.%o , and {X~}.%o recursively
as follows. Let no = 1, and select mo > no and a point set

Xo : a = Xoo < x 10 < ... < x(mo+1)O = b

such that max1<i<m +1 (XiO - X(i-l)O) < On . In the induction stage, supposeo 0

that QIX (if ex ~ 1), nIX' mIX, and

XIX: a = Xo~ < Xl~ < ... < x(mIX+1)~ = b

have been found. We select a polynomial Q~+1 via Wolibner's theorem [7,9]
such that Q~+1(Xi"') = (_1)i 2-(",+1), i = 0, ... , m", -'-- 1, and Q"'+1 is monotone
on each of the intervals [X(i-l)"" Xi"']' i = 1,... , m", + 1. Let n"'+1 be the
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degree of Q"'-t-l. Since Q"'+l has at least rn", + 1 zeros, n~+l > rn",. Select
rn"'+l > n"'+l and a point set

such that (i) X", h X"'+l' (ii) for i = 1, ... , rn", + 1, {x EO X"'+l : X(i-l)", < x <
Xi"'} contains an even number of points, and (iii) maX1<:i<:ma+1+l (Xi(",+l) -

X(i-l)(a+l») < On .
co a+1

Let f = L"'=l Q",. Since each II Q", II = 2-"', the Weierstrass M-test insures
that f EO ql). The strict monotonicity of each Q", on the subintervals of I
induced by X"'_l and properties (i) and (ii) imply that for jj ~ 1, I L;~13+1 Q", I
has norm 2-13 and attains its norm only on Xs . Furthermore, L;~S+l Q", alter
nates in sign at the points of Xs . By the alternation theorem [2, p. 75] and
since n", < rn", < n"'+l for all ex, Tn/f) = Tm/f) = L:~l Q", and En/f) =
Emf/f) = Xs for all jj ~ 1.

For any p EO Sns' select y EO I such that I p(y) I = 1. By (iii) there is an
XiS EO En/f) = Xs such that sgn en/f)(xiS) = sgnp(y) and I y - XiS I < on

13
•

Thus

max [sgn en/f)(x)] p(x) ~ [sgn en/f)(xiS)] P(XiS)
XEEns(f)

= [sgnp(y)]p(y) - [sgnp(y)](p(y) - p(XiI3)

> 1 - Ilns.

By [2, problem 6, p. 83] and by (3)

1 ~ Mnif) ~ (1 - I/ns)-l

for all jj ~ 1. Hence, 1imn~oo Mn(f) = 1. Now note that Em (f) = Xs con
tains exactly rns + 2 points for all jj ~ 1. By Theorem 4, the sequence (2)
corresponding to this function f is unbounded, and, as a result, rrmn~oo

Mn(f) = 00.

4. CONCLUSIONS

The results of this paper tend to strengthen the conjecture of Henry and
Roulier [4] that the sequence (2) is unbounded for all nonpolynomialfEO ql)
and reduce the problem of Poreda [7] to a degenerate case where the extremal
sets contain "too many" points. An interesting problem which arises from
this analysis is that of determining whether a function f EO ql) exists such
that for all sufficiently large n, En(f) contains more than n + 2 points. We
note that answering this question in the negative would completely solve
Poreda's problem.
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